Welcome to Session 2

2024

Future-proofing Beef Selection Decisions

Session 2-Part 2 Strategic Selection Decision Making

Make sure your selection decisions match YOUR breeding objective

Dr. Matt Spangler University of Nebraska

Make sure your selection decisions match YOUR breeding objective

Matt Spangler mspangler2@unl.edu University of Nebraska-Lincoln

There is substantial lag in both directions

PROBLEM

- Carcass endpoint indexes place selection emphasis on a different suite of traits compared weaning endpoint indexes.
 - Not only are there additional traits in a slaughter index, but the marginal economic value of weaning weight differs substantially
- Direct payments to cow-calf producers based on (assumed) post-weaning performance do not occur at scale in the U.S. Beef Industry
 - Value differentiation of feeder calves is not directly tied to genetics
 - There is market failure

PERVASIVE THOUGHTS

- The endpoint for all calves is (eventually) a carcass
- If I want buyers to pay more for my cattle I need to select for post-weaning performance

QUESTIONS

- What enterprise should economic selection indexes be economically optimal for?
- Do selection decisions differ if the breeding goal is designed for a producer who sells at weaning vs one who retains ownership?
- What are the options for producers who do sell calves at weaning?

OPTIONS

- Weaning index
- Weaning index with ICL for carcass traits that move with genetic trends to reduce risk
- Carcass index
- Weaning index with carcass traits weighted proportional to direct revenue received from feeder calf buyer
- Retain ownership of calves

iGENDEC SOFTWARE

https://beefimprovement.org/resource-center/igendec/

PREVIOUS WORK

(Valasek et al., 2024)

	Endpoint		
Trait	Weaning	Carcass	
Weaning Weight-Direct (WW- D)	\checkmark	\checkmark	
Weaning Weight-Maternal (WW-M)	\checkmark	\checkmark	
Mature Weight (MW)	\checkmark	\checkmark	
Stayability (STAY)	\checkmark	\checkmark	
Heifer Pregnancy (HP)	\checkmark	\checkmark	
Calving Ease-Direct (CE-D)	\checkmark	\checkmark	
Calving Ease-Maternal (CE-M)	\checkmark	\checkmark	
Hot Carcass Weight (HCW)		\checkmark	
Ribeye Area (REA)		\checkmark	
Fat Depth (FAT)		\checkmark	
Marbling Score (MS)		\checkmark	
Feed Intake (FI)		\checkmark	

COMPARING RANKS OF BULLS PLANNING HORIZON AND ENDPOINT

Average rank correlation between endpoints = 0.71 (0.1)

Valasek et al., 2024

COMMONALITY OF BULLS SELECTED BETWEEN ENDPOINTS (JACCARD INDEX)

РН	Тор 0.5%	Top 1%	Top 5%
2	12.5 ± 2.6	12.8 ± 4.2	22.1 ± 6.9
5	9.6 ± 3.7	. ± 4.9	21.3 ± 7.5
10	10.1 ± 4.1	15.1 ± 4.4	25.1 ± 5.1
20	19.9 ± 2.7	24.7 ± 3.9	38.9 ± 4.0
30	24.6 ± 4.5	30.6 ± 2.8	44.7 ± 0.7
50	31.1 ± 4.9	36.5 ± 3.3	48.8 ± 1.7

Valasek et al., 2024

DIGGING DEEPER

- Previous work showed:
 - Rank of selection candidates differed but was "high"
 - Bulls actually selected would differ
- Questions remain:
 - What is the opportunity cost of using an index that does not match the breeding objective?
 - What are the alternatives to contemplate post-weaning merit when animals are sold at weaning?

DETAILS OF SCENARIOS

- Purebred breeding system with a 20-yr. planning horizon
- Indexes and selection schemes investigated
 - Self-replacing index with animals sold at harvest
 - Self replacing index with animals sold at weaning
 - Self replacing index with animals sold at weaning and ICL imposed for marbling
 - Self replacing index with animals sold at weaning and ICL imposed for hot carcass weight
 - Only ICL used for traits in weaning index
 - More stringent ICL set for traits in weaning index

ICL DEFINED

- Weaning index with ICL for MS
 - Select on index and then impose ICL for MS in top 50% of breed
- Weaning index for ICL for HCW
 - Select on index and then impose ICL for HCW in top 50% of breed
- ICL for all weaning traits
 - Impose ICL for CED, CEM, STAY, MWT, WWd in top 50% of breed
 - Impose ICL for WWm between 25th and 75th percentile
 - Impose ICL for MS in top 50% of breed
 - Random selection (5x number of bulls needed before random selection)
- More stringent ICL for weaning traits
 - Impose ICL for CED, WWd, STAY in top 25% of breed
 - Impose ICL for MWT in top 50% of breed
 - Remove outliers for WWm

DIFFERENCES IN BREEDING OBJECTIVES

SELECTION CANDIDATES IN COMMON AMONG SCENARIOS

COMMON BULLS

MEAN WEANING INDEX VALUE OF SELECTED BULLS

MEAN INDEX VALUE

Change from ~0% to ~10% relative emphasis on CED

Changes in Relative Emphasis by Annual Variable Cow Costs (US \$) for Mature Cow Weight (MWT), Stayability (Stay) and Hot Carcass Weight (HCW)

CONCLUDING THOUGHTS

- My point is not to dissuade anyone from using indexes
 - Clearly only using ICL is sub-optimal
- Use harvest endpoint index if value difference as shown here can be captured by "premiums" for calves
- Illustrations from tools like iGENDEC can aid in communication to producers
- The scenarios herein were not exhaustive
 - But should serve as enough for conversation

THANK YOU

- Darrh Bullock
- Hunter Valasek
- Bruce Golden
- Scott Newman

Session 3 on October 16, 2024

Understanding Methane: From Phenotyping to Selection Opportunities

Tools of a new trade: methane phenotyping for genetic evaluations Dr. Bailey Engle, USDA-ARS, US Meat Animal Research Center

Selecting for Methane Emissions: Global examples and opportunities in the US beef industry Dr. Troy Rowan, University of Tennessee

