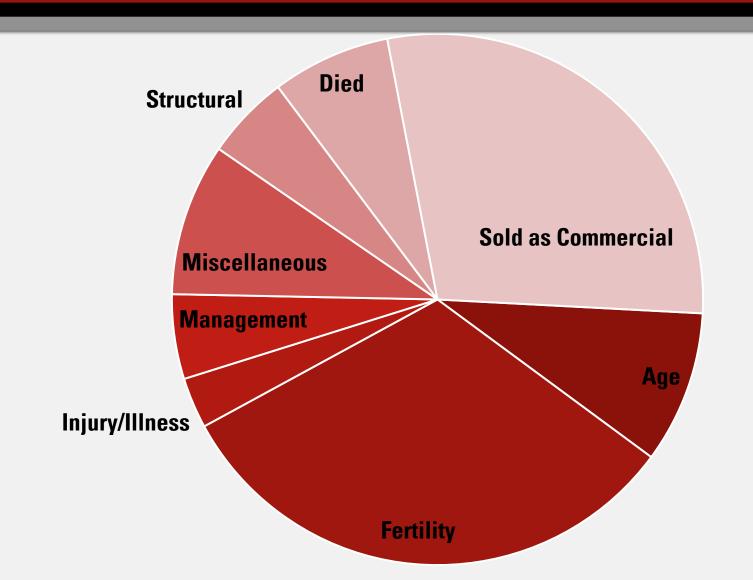
New Opportunities for Maternal Trait Selection in Angus Cattle

Esther Tarpoff, PhD Director of Performance Programs American Angus Association

Functional Longevity


Cows that stay in the herd and produce a calf every year

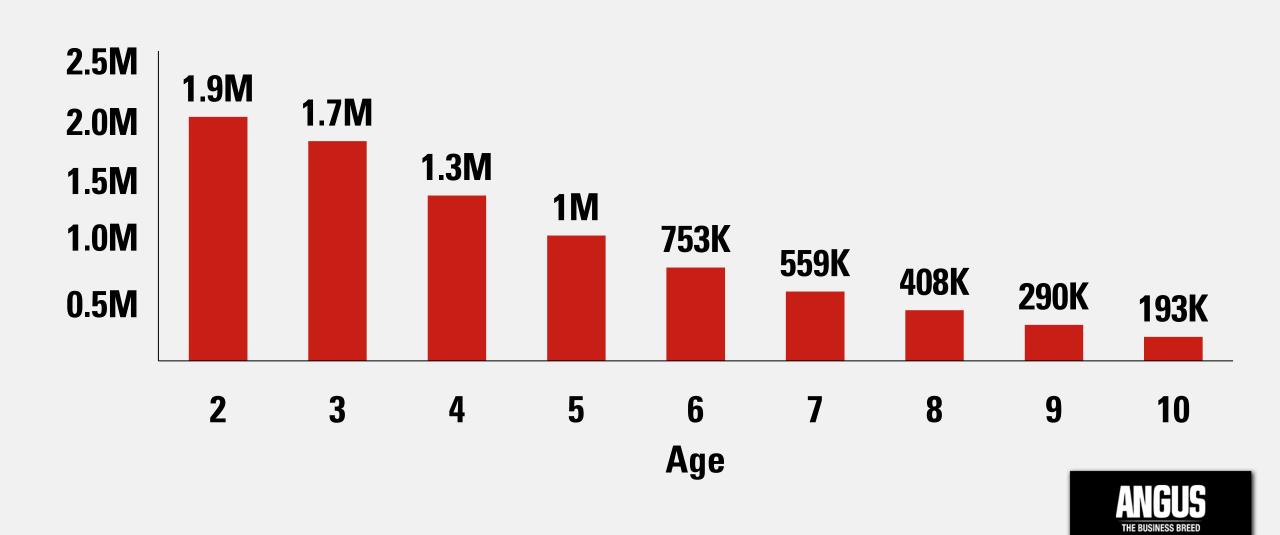
Definition: on average, number of calves a sires daughters are predicted to produce by 6 years of age compared to other sires daughters

Data: calving and culling records

Why do females leave the herd?

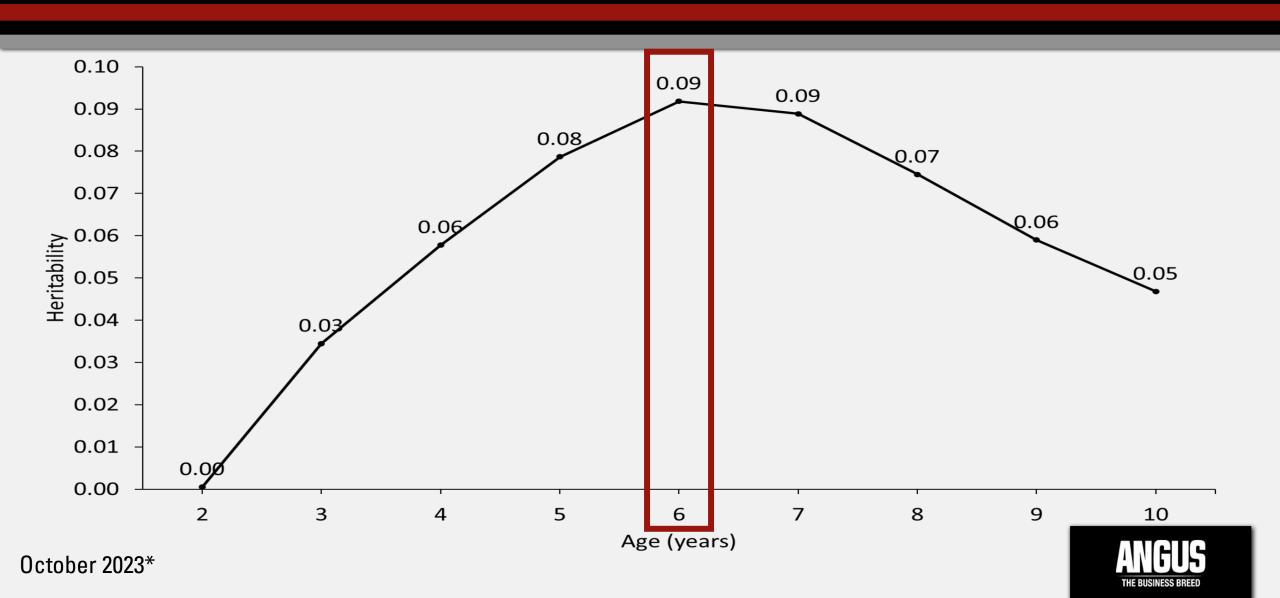
Scope of the Functional Longevity Evaluation

 FL data includes American Angus Association and Canadian Angus Association data



- 2.09M cows with records
 - 8.89M records total
- 1.87M genotyped animals
- 4.56M animals in the pedigree

Distribution of cows with records by age


What records are used?

- Inventory Reporting data (since 2012)
 - ~15% of records
- Calving and culling records since 1990
- Must calves as a two-year-old female
- Ages 2-10 (9 possible calving events)
- Phenotype is number of calves
- Model
 - Random regression model

Functional Longevity heritability is 0.10

EPD are highly correlated after age 6

Age	3	4	5	6	7	8	9	10
3	0.03	0.99	0.97	0.94	0.90	0.84	0.79	0.73
4		0.06	0.99	0.97	0.94	0.91	0.86	0.81
5			80.0	0.99	0.98	0.95	0.91	0.87
6				0.09	0.99	0.98	0.95	0.92
7					0.09	0.99	0.98	0.96
8		symmetric				0.07	≥0.99	0.98
9							0.06	≥0.99
10								0.05

Predicting the EPD at 6 years of Age

Beef Industry Considerations

- Recommended by Beef Improvement Federation (BIF) as predicted.
 - Continuity for national cattle evaluation
- Accepted industry age for when females "pay off" themselves in the herd

Breed Specific Considerations

- Heritability is maximized at Age 6 (0.10)
- Genetic correlations are high
 >0.90 for ages 6-10
 - Minimal re-ranking of sires
 - Data still included from 7-10 years to add accuracy and information

FL Units: number of calves by 6 years of age

Sire	FL EPD
Α	1.5
В	0.5
Difference	1.0

• On average, sire A's daughters are expected to produce 1 more calf by age 6 compared to sire B's daughters

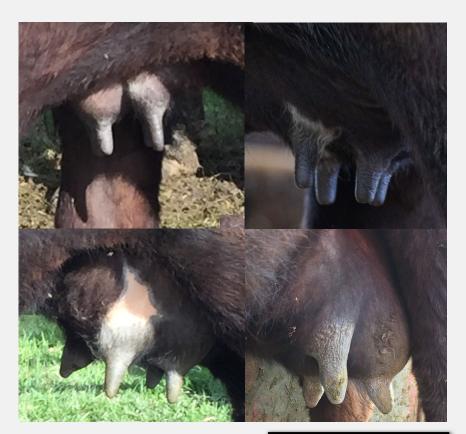
 If the breeding goal is to increase the number of calves produced, a sire with a higher FL EPD is more desirable compared to a sire with a lower FL EPD

Practical anecdotes about the trait have been realized

- Select a larger, more positive EPD.
- Like with any NEW trait spread in the EPD is limited.
- Low to moderate correlations to EPDs present.
 - True multi-trait genetic correlations are being worked through
- Heritability is low.
 - Slow rate of genetic change, but can still use for selection
 - Management and environment play a large role

It is not about the individual cow.

- Genetic improvement for this trait isn't about the individual female.
 - It is about the aggregate information provided by a sire's daughters.



Teat Size & Udder Suspension

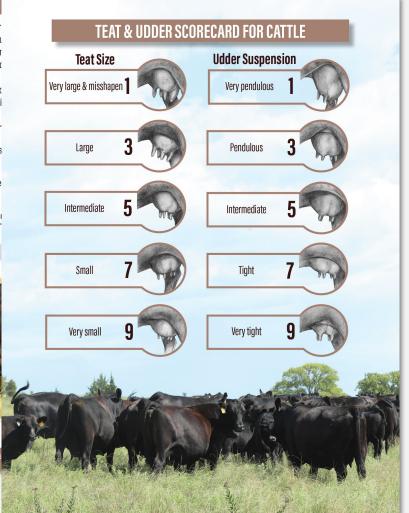
Teat and Udder Conformation

- Quality influences profitability
- A leading cause of culling, lower cow longevity and lifetime productivity
- Extremes of udder and teat scores can become detrimental at some point
 - Calf is unable to suckle and consume colostrum
 - Suspension held too close to body cavity

Data Collection

TEAT & UDDER SCORING

Teat and udder conformation are traits essential to a productive cow. Poor teat or udder provides an opportunity to cull females, and increases difficulty for a newborn calf to su Association accepts udder scores from members through a simple two category system teat size and udder suspension are scored on the same quarter but are scored independ

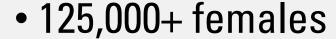

For **SUBMISSION OF SCORES**, they must be collected with 24 hours of calving. Teat and collecting calf birth weight and calving ease data. Submit information through AAA Logi

GUIDELINES:

- · Collect within 24 hours of calving
- Use weakest quarter to score both teat size and udder s
- · Score both teat size and udder suspension on 1-9 scale,
- · Calving ease and birth weight data can also be collecte
- Submit data with calving book information
- · Best if one person scores all females in each manageme

angus.org/university

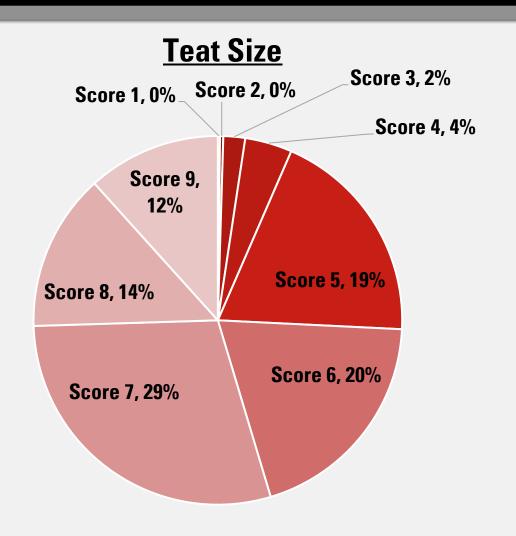
Guidelines – Follow BIF Recommendations

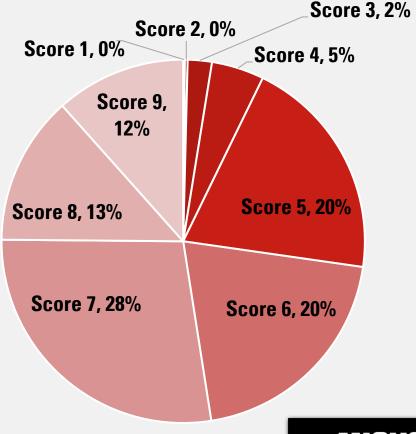

- Taken within 24 hours of calving
- Use <u>weakest quarter</u> to <u>score both</u> teat size and udder suspension
- Score both teat size and udder suspension on (1-9) scale, independently
- Can use intermediate scores (2, 4, 6, 8)
- Score without consideration for age
- One person scoring per group

	UDDER SUSPE	ENSION	TEAT SIZE	
1	Very Pendulous		Very Large & Misshapen	2
3	Pendulous	The state of the s	Large	non
5	Intermediate	3	Intermediate	ww
7	Tight	DO W	Small	0
9	Very Tight	TO	Very small	

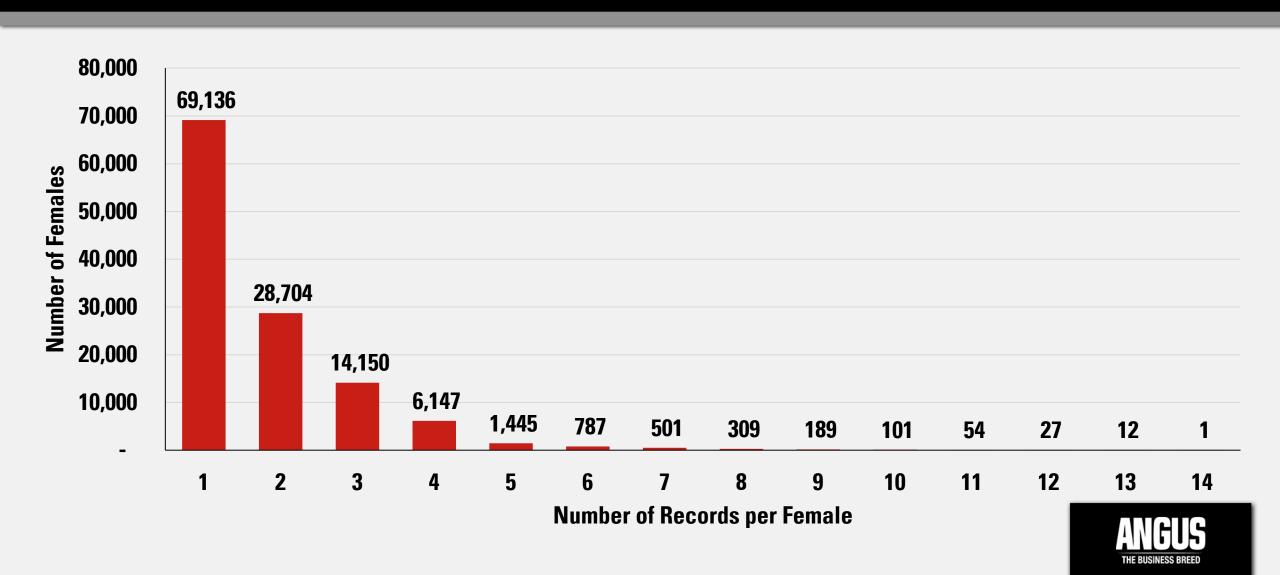
Scope of Teat and UDDR Evaluation

 Includes American Angus Association and Canadian Angus Association data

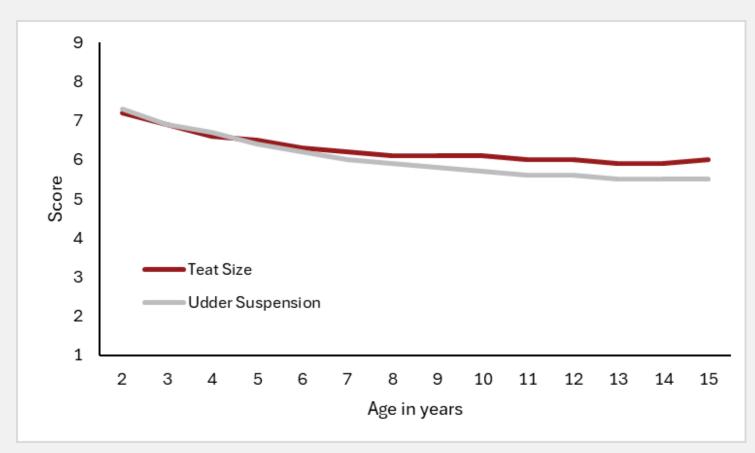

- 433,000+ combined scores
- 1.87M genotyped animals
- 2.8M animals in the pedigree



Distribution of scores – Average score ~6.5



Udder Suspension



Distribution of Repeated Records – Teat Size

We know udders breakdown with age

- Udder conformation = structural trait
- Breakdown with age
- Score without consideration if female is a first calf heifer or 14 years old

Teat and UDDR EPDs

Teat Size (Teat)

 Expressed in units of teat size score, with a higher EPD indicating a sire will produce daughters with smaller teat size compared to that of other sires' daughters

A higher EPD moves closer to a smaller teat (score of 9)

Udder Suspension (UDDR)

 Expressed in units of udder suspension score, with a higher EPD indicating a sire will produce daughters with tighter udder suspension compared to that of other sires' daughters

A higher EPD moves closer to a closer suspended udder (score of 9)

EPD and ACC distribution

	Number of animals	Average	Min	Max	SD				
<u>Teat Size</u>									
EPD	2.7M	0.52	-0.66	1.53	0.17				
ACC	2.7M	0.27	0.05	0.91	0.09				
	<u>Udder Suspension</u>								
EPD	2.7M	0.52	-0.58	1.24	0.14				
ACC	2.7M	0.26	0.05	0.91	80.0				

Heritability and Correlation

	Teat	Udder
	Size	Suspension
Teat Size	0.32	0.77
Udder Suspension		0.28

What about correlations with other traits?

- Extremes in either direction (closer to either a score of 9 or 1) may cause undesirable results
- Negative correlations do exist
 - Selecting higher EPD (more towards a score of 9), may decrease WW and Milk

Teat Size					
Weaning weight direct (WW)	-0.14				
Weaning weight maternal (Milk)	-0.17				
Udder Suspension					
Weaning weight direct (WW)	-0.11				
Weaning weight maternal (Milk)	-0.24				

	UDDER SUSPE	ENSION	TEAT SIZE	
1	Very Pendulous		Very Large & Misshapen	2
3	Pendulous	1	Large	non
5	Intermediate	Intermediate Intermediate		wo
7	Tight	and a	Small	9
9	Very Tight	TO	Very small	

Three New Maternal Selection Tools

			PROD	UCTION							_	MATE	RNAL		_		
CED ACC % PROG	BW ACC % PROG	WW ACC % PROG	YW ACC % PROG	RADG ACC % PROG	DMI ACC % PROG	YH ACC % PROG	SC ACC % PROG	HP ACC % Daus	CEM ACC % Daus	MILK ACC %	MKH MKD	TEAT ACC % PROG	UDDR ACC % PROG	FL ACC % Daus	MW ACC % Prog	MH ACC % PROG	\$EI %
⊦1 3	+1.6	+84	+147	+.27	+1.88	+.4	+1.23	+11.2	+17	+21	1	+.61	+.53	+1.00	+87	+.5	-2
.87	.96	.94	.91	.53	.53	.91	.90	.42	.45	.36	4	.50	.48	.40	.47	.46	
10%	60%	10%	15%	40%	95%	60%	30%	50%	1%	80%		35%	50%	75%	25%	40%	75
1248	4121	3227	1618	15	15	697	759	56	20			17	17	24			
	ere to show/							MANAG									
	DOC ACC %				CLAW ACC %			ANG AC 9	GLE CC 6			PAP ACC %				HS ACC %	
	PROG				PROG			PR				PROG				PROG	
	+18				+.42			+.4				1				+.43	
	.85				.81			.8				40				.76	
	55%				25%			45				20%				35%	
	332				410			41	.0			58			138		
<u> Click h</u>	ere to show/	hide Angus	-on-Dairy \$\	Values Sectio	<u>n</u>												
			CAR	RCASS				ANGUS	-ON-DAIRY	VALUES				\$VALUES			
CW ACC %	MARB ACC %	R AC 9		FAT ACC %	CARC GRP PROG		D GRP ROG	\$AXH %		\$AXJ %	\$M %	\$W %	\$I %		\$G %	\$B %	\$0 %
+64	+1.07	+1.	.03	+.013	3	3	93	+202		+182	+70	+74	+10	04 +	-78	+182	+30
.57	.53	.5	3	.48	5	11	L51										
25%	15%	15	5%	45%				10%		10%	35%	30%	35	0/ 1	5%	20%	159

Phenotypic traits: CE, BW, WW, YW, Doc, Claw, Angle, UScanWT, UIMF, URE, URibFat, URumpFat

Bold Phenotypes are included in the National Cattle Evaluation. More Info

 Teat, UDDR, and FL are in the Maternal suite of EPDs

 All three were incorporated in the Maternal Weaned Calf Value (\$M) in May

Maternal Weaned Calf Value (\$M)

- Expressed in dollars per head, predicts
 profitability differences from conception to
 weaning with the underlying breeding
 objective assuming that individuals retain
 their own replacement females within herd
 and sell the rest of the cull female and all
 male progeny as feeder calves.
- The model assumes commercial producers will have a 20% herd level replacement rate.

12 Traits included in \$M						
CED FL						
WW	MW					
CEM	DOC					
Milk	HP					
Teat	Claw					
UDDR	Angle					

What does that ideal commercial Angus female look like?

- Refinement of economic values taking place to accurately model the commercial herd
- Feedback from the industry:
 - Survey ranked cow survival/longevity at the top of the list.
 - All profitability starts with fertility and longevity.
 - Combined value is heavily weighted towards terminal.

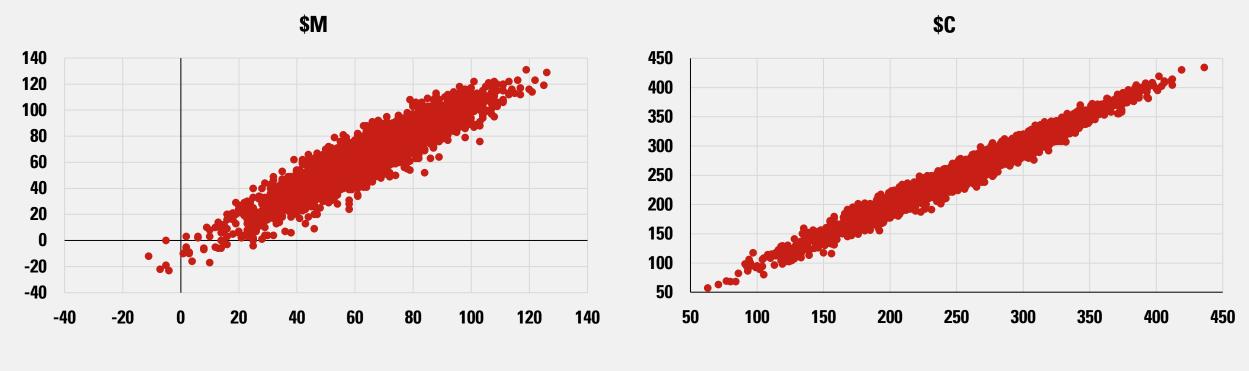
Trait	Median
Cow survival	4.5
Docility	5.2
Foot score	5.5
Heifer pregnancy	5.6
Weaning weight	6.6
Calving ease	6.6
Body condition score	7.5
Marbling grade	7.7
Feedlot efficiency	7.8
Milk	7.9
Feedlot gain	9.1
Cow mature weight	9.8
Cow frame score	10.6
Yield grade	10.7

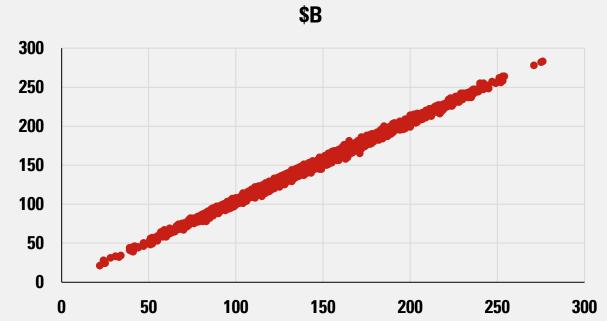
General assumptions currently being applied to Teat Size and Udder Suspension

- The probability that a cow is culled for teat size or udder conformation is greatest at 4 years of age.
 - The ability for a cow to survives from 4 to 5 years of age.
- Chances of cows being culled:
 - 75% chance that cows in the 1/2/3 categories will be culled
 - 15% chance they will be culled 4/5 categories
 - 0% chance they will be culled 6/7 and 8/9

	UDDER SUSPE	ENSION	TEAT SIZE	
1	Very Pendulous		Very Large & Misshapen	PA.
3	Pendulous	3	Large	Tool
5	Intermediate	3	Intermediate	W
7	Tight	To you	Small	0
9	Very Tight	TA	Very small	

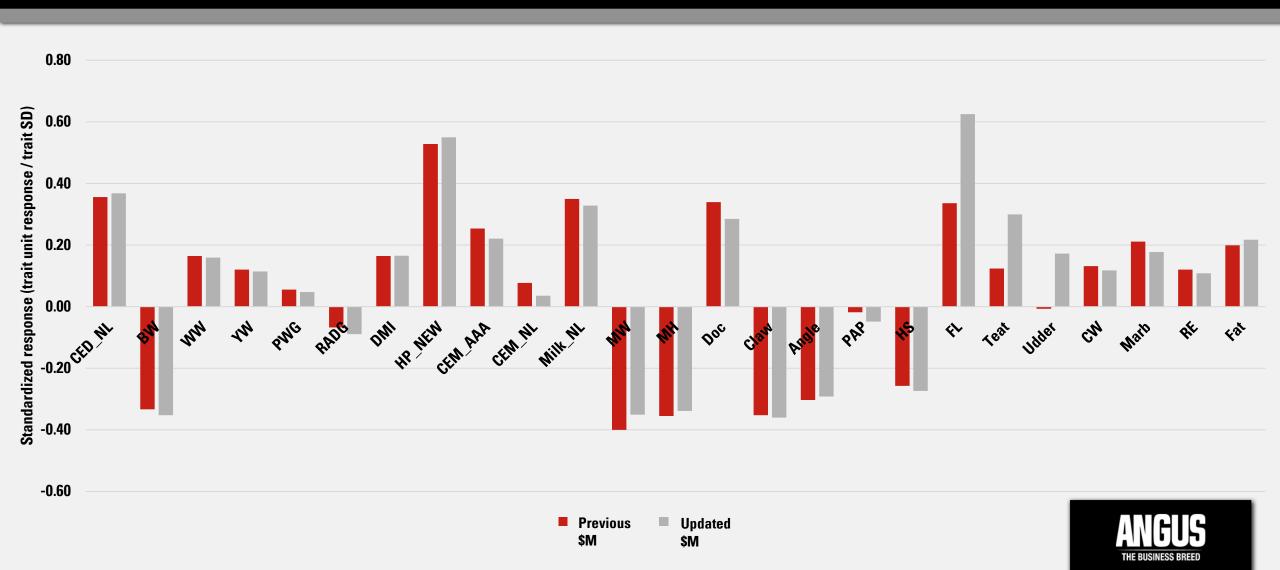
Functional Longevity | Cost and revenues associated with FL


- Cull cow sales: Generate revenue from cull carcass value
- Calf sales: Calf value positively correlated with calf weight
- Average genetic merit of the herd: Older cows = lower genetic merit
- Replacement Heifer Cost
- Feed costs: Retaining a higher proportion of older cows through FL allows for higher proportion of feed cost going to maintenance instead of growth
- Calving Assistance: Calving ease tends to be better for older cows than younger cows.



\$M correlations were >0.90

	N	\$M	\$B	\$C
All	445,000	0.91	0.999	0.98
Current S&D	330,000	0.90	0.999	0.98
Non-Parents	116,000	0.91	0.999	0.98
Main & Supps	4,000	0.91	0.999	0.98
Top 200	200	0.95	0.999	0.99



Main and Supplemental Sires

Compare Response to Selection for Previous and Updated \$M

Three New Maternal Selection Tools

PRODUCTION											_	MATE	RNAL		_			
CED ACC % PROG	BW ACC % PROG	WW ACC % PROG	YW ACC % PROG	RADG ACC % PROG	DMI ACC % PROG	YH ACC % PROG	SC ACC % PROG	HP ACC % Daus	CEM ACC % Daus	MILK ACC %	MKH MKD	TEAT ACC % PROG	UDDR ACC % PROG	FL ACC % Daus	MW ACC % PROG	MH ACC % PROG	\$EI %	
⊦1 3	+1.6	+84	+147	+.27	+1.88	+.4	+1.23	+11.2	+17	+21	1	+.61	+.53	+1.00	+87	+.5	-2	
.87	.96	.94	.91	.53	.53	.91	.90	.42	.45	.36	4	.50	.48	.40	.47	.46		
10%	60%	10%	15%	40%	95%	60%	30%	50%	1%	80%		35%	50%	75%	25%	40%	75	
1248	4121	3227	1618	15	15	697	759	56	20			17	17	24				
	ere to show/																	
DOC ACC %				CLAW ACC %				MANAGEMENT ANGLE ACC %			PAP ACC %				HS ACC %			
PROG				PROG				PROG			PROG				PROG			
+18				+.42				+.47							+.43			
.85				.81				.80			40				.76			
55%				25%				45%			20%				35%			
332				410				410			58				138			
<u> Click h</u>	ere to show/	hide Angus	-on-Dairy \$V	Values Sectio	<u>n</u>													
				CARCASS				ANGUS-ON-DAIRY \$VALUES							VALUES			
CW ACC %	MARB ACC %	R AC 9		FAT ACC %	CARC GRP PROG		D GRP ROG	\$AXH %		\$AXJ %	\$M %	\$W %	\$I %		\$G %	\$B %	\$0 %	
+64	+1.07	+1.	.03	+.013	3	39	93	+202		+182	+70	+74	+10	04 +	-78	+182	+30	
.57	.53	.5	3	.48	5	11	L51											
25%	15%	15	3%	45%				10%		10%	35%	30%	35	0/ 1	5%	20%	159	

Phenotypic traits: CE, BW, WW, YW, Doc, Claw, Angle, UScanWT, UIMF, URE, URibFat, URumpFat

Bold Phenotypes are included in the National Cattle Evaluation. More Info

 Teat, UDDR, and FL are in the Maternal suite of EPDs

 All three were incorporated in the Maternal Weaned Calf Value (\$M) in May

QUESTIONS/CONTACT

Esther Tarpoff

Director of Performance Programs 816.383.5187 | etarpoff@angus.org

